Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin.
نویسنده
چکیده
A photodiode array in conjunction with a rapid stopped-flow mixing method, with a millisecond time resolution, is used here to study the refolding of the membrane protein bacteriorhodopsin from an apoprotein state with a native-like secondary structure in mixed phospholipid/detergent micelles. Refolding to the native state is initiated by the rapid mixing of all-trans-retinal and the apoprotein bacterioopsin in mixed micelles. A lag phase of several seconds is observed in the appearance of the native state, as monitored by the increase in absorbance of the native chromophore. This observation demonstrates unequivocally that an intermediate is obligatory in the formation of bacteriorhodopsin. It is further shown that this intermediate is spectroscopically distinct from free retinal (absorbance maximum approximately 380 nm) and bacteriorhodopsin (absorbance maximum approximately 560 nm) and absorbs maximally at 430 nm. Evidence for the decay of the 430 nm intermediate into bacteriorhodopsin via three distinct parallel pathways is also provided. Taken together, these findings are used to describe a model in which distinct populations of the apoprotein in mixed micelles appear to fold along separate pathways via their corresponding intermediates into the native state. How the results of this study provide new insights into the mechanisms of protein folding is discussed.
منابع مشابه
Unravelling the folding of bacteriorhodopsin.
The folding mechanism of integral membrane proteins has eluded detailed study, largely as a result of the inherent difficulties in folding these proteins in vitro. The seven-transmembrane helical protein bacteriorhodopsin has, however, allowed major advances to be made, not just on the folding of this particular protein, but also on the factors governing folding of transmembrane alpha-helical p...
متن کاملEvidence that bilayer bending rigidity affects membrane protein folding.
The regeneration kinetics of the integral membrane protein bacteriorhodopsin have been investigated in a lipid-based refolding system. Previous studies on bacteriorhodopsin regeneration have involved detergent-based systems, and in particular mixed dimyristoylphosphatidylcholine (DMPC)/CHAPS micelles. Here, we show that the short chain lipid dihexanoylphosphatidylcholine (DHPC) can be substitut...
متن کاملBacteriorhodopsin Folds through a Poorly Organized Transition State
The folding mechanisms of helical membrane proteins remain largely uncharted. Here we characterize the kinetics of bacteriorhodopsin folding and employ φ-value analysis to explore the folding transition state. First, we developed and confirmed a kinetic model that allowed us to assess the rate of folding from SDS-denatured bacteriorhodopsin (bRU) and provides accurate thermodynamic information ...
متن کاملMechanical properties of bovine rhodopsin and bacteriorhodopsin: possible roles in folding and function.
Molecular interactions and mechanical properties that contribute to the stability and function of proteins are complex and of fundamental importance. In this study, we used single-molecule dynamic force spectroscopy (DFS) to explore the interactions and the unfolding energy landscape of bovine rhodopsin and bacteriorhodopsin. An analysis of the experimental data enabled the extraction of parame...
متن کاملRetinal binding during folding and assembly of the membrane protein bacteriorhodopsin.
The factors driving folding and assembly of integral membrane proteins are largely unknown. In order to determine the role that the retinal chromophore plays in assembly of bacteriorhodopsin, we have determined the kinetics and thermodynamics of retinal binding during regeneration of bacteriorhodopsin, from denatured apoprotein, in vitro. Regeneration is initiated by rapid, stopped-flow, mixing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 37 43 شماره
صفحات -
تاریخ انتشار 1998